Solve each problem.

1) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A	
Total Boxes	Total Pieces
11	330
20	600

Company B

$$
y=27 x
$$

Find the total number of pieces you'd get from buying 13 boxes of candy from the company with the fewest pieces per box.
2) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A	
Total Pounds	Total Cost (\$)
18	4.32
15	3.60

Company B

$y=0.30 x$

Find the total cost in dollars of buying 11 pounds of sugar from the more expensive company.
3) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A

Contractor A	
Square Feet	Total Price (\$)
1356	166,788
1069	131,487

Contractor B

$$
y=113 x
$$

1. \qquad
2. \qquad
3. \qquad

What is the difference in the price per square foot between contractor A and contractor B ?

Solve each problem.

Answers

1) Two companies are selling boxes of candy. The pieces of candy you get from Company A
is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Total Boxes	Total Pieces
11	330
20	600
$y=30 x$	

Company B

$$
y=27 x
$$

Find the total number of pieces you'd get from buying 13 boxes of candy from the company with the fewest pieces per box.
2) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A	
Total Pounds	Total Cost (\$)
18	4.32
15	3.60
$y=0.24 x$	$y=0.30 x$

Find the total cost in dollars of buying 11 pounds of sugar from the more expensive company.
3) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Square Feet	Total Price (\$)
1356	166,788
1069	131,487
$y=123 x$	

Contractor B

$$
y=113 x
$$

1. 351
2. \qquad
3. \qquad

What is the difference in the price per square foot between contractor A and contractor B?

Solve each problem.

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt- Hours	Total Cost (\$)
1236	98.88
1419	113.52

Company B
$\mathrm{y}=0.08 \mathrm{x}$

Find the total cost in dollars of buying 1,018 kilowatt hours of electricity from the cheapest company.
2) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A	
Square Feet	Total Price $(\$)$
1993	229,195
1202	138,230

Contractor B
$y=118 x$

Find the total price you'd get from building a $1,168 \mathrm{sq} / \mathrm{ft}$ house from the more expensive contractor.
3) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A	
Total Pounds	Total Cost (\$)
10	2.90
13	3.77

Company B
$\mathrm{y}=0.20 \mathrm{x}$

What is the difference in price per pound between Company A and Company B?

Solve each problem.

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Total Kilowatt- Hours	Total Cost (\$)
1236	98.88
1419	113.52
$\mathrm{y}=0.08 \mathrm{x}$	

Company B
$y=0.08 x$

1. \qquad
81.44
2. \qquad
3. \qquad

Find the total cost in dollars of buying 1,018 kilowatt hours of electricity from the cheapest company.
2) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Square Feet	Total Price $(\$)$
1993	229,195
1202	138,230
$y=115 x$	

Contractor B

$y=118 x$

Find the total price you'd get from building a $1,168 \mathrm{sq} / \mathrm{ft}$ house from the more expensive contractor.
3) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Total Pounds	Total Cost (\$)
10	2.90
13	3.77
$y=0.29 x$	

Company B
$\mathrm{y}=0.20 \mathrm{x}$

What is the difference in price per pound between Company A and Company B?

Solve each problem.

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt- Hours	Total Cost (\$)
1060	159.00
1499	224.85

Company B
$y=0.15 x$

Find the total cost in dollars of buying 1,346 kilowatt hours of electricity from the cheapest company.
2) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total Pounds	Total Cost (\$)
10	100.00
14	140.00

Company B

$y=28.00 x$

Find the total cost in dollars of buying 15 pounds of jerky from the more expensive company.
3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A	
Pounds	Total Price (\$)
1602	$3,107.88$
1805	$3,501.70$

What is the difference in the price per pound between junk yard A and junk yard B?

Solve each problem.

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Total Kilowatt- Hours	Total Cost (\$)
1060	159.00
$\mathrm{y}=0.15 \mathrm{x}$	

Company B
$y=0.15 x$

Find the total cost in dollars of buying 1,346 kilowatt hours of electricity from the cheapest company.
2) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total Pounds	Total Cost (\$)
10	100.00
14	140.00
$y=10.00 x$	

Company B

$y=28.00 x$

Find the total cost in dollars of buying 15 pounds of jerky from the more expensive company.
3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A			
Pounds	Total Price (\$)		
1602	$3,107.88$		
1805	$3,501.70$		
$\mathrm{y}=1.94 \mathrm{x}$			
$y=1.80 \mathrm{x}$		\quad	
:---			

What is the difference in the price per pound between junk yard A and junk yard B?

1. $\quad 201.9$
2. \qquad
3. \qquad

Solve each problem.

1) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total Pounds	Total Cost (\$)
18	270.00
20	300.00

Company B
$y=14.00 x$

Find the total cost in dollars of buying 17 pounds of jerky from the cheapest company.
2) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard B

Pounds	Total Price (\$)
1359	$2,813.13$
1274	$2,637.18$

$$
\mathrm{y}=2.05 \mathrm{x}
$$

Find the total price you'd get from recycling 1,815 pounds of metal at the more expensive junk yard.
3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt- Hours	Total Cost $(\$)$
1282	141.02
1196	131.56

Company B
$y=0.09 x$

1. \qquad
2. \qquad
3. \qquad

What is the difference in price per kilowatt hour between Company A and Company B?

Solve each problem.

1) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Total Pounds	Total Cost (\$)
18	270.00
20	300.00
$y=15.00 x$	

Company B
$y=14.00 x$

Find the total cost in dollars of buying 17 pounds of jerky from the cheapest company.
2) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard B

Pounds	Total Price (\$)
1359	$2,813.13$
1274	$2,637.18$
$y=2.07 \mathrm{x}$	

$$
\mathrm{y}=2.05 \mathrm{x}
$$

Find the total price you'd get from recycling 1,815 pounds of metal at the more expensive junk yard.
3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Total Kilowatt- Hours	Total Cost $\mathbf{(\$)}$
1282	141.02
$\mathrm{y}=0.11 \mathrm{x}$	

Company B
$y=0.09 x$

1. 238
2. \qquad
3. \qquad 3,757.05
\qquad

What is the difference in price per kilowatt hour between Company A and Company B?

Solve each problem.

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt- Hours	Total Cost (\$)
1315	105.20
1304	104.32

Company B
$\mathrm{y}=0.08 \mathrm{x}$

Find the total cost in dollars of buying 1,254 kilowatt hours of electricity from the cheapest company.
2) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A

Total Pounds	Total Cost (\$)
11	286.00
14	364.00

Company B

$y=30.00 x$

Find the total cost in dollars of buying 11 pounds of jerky from the more expensive company.
3) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A	
Square Feet	Total Price $\mathbf{(\$)}$
1869	214,935
1423	163,645

Contractor B

$$
y=116 x
$$

1. \qquad
2. \qquad
3. \qquad

What is the difference in the price per square foot between contractor A and contractor B ?

Solve each problem.

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Total Kilowatt- Hours	Total Cost (\$)
1315	105.20
$\mathrm{y}=0.08 \mathrm{x}$	

Company B
$\mathrm{y}=0.08 \mathrm{x}$

Find the total cost in dollars of buying 1,254 kilowatt hours of electricity from the cheapest company.
2) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A

Total Pounds	Total Cost (\$)
11	286.00
14	364.00
$y=26.00 \mathrm{x}$	

Find the total cost in dollars of buying 11 pounds of jerky from the more expensive company.
3) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Square Feet	Total Price $(\$)$
1869	214,935
1423	163,645
$y=115 x$	

Contractor B

$$
y=116 x
$$

Company B
$y=30.00 x$

$$
y=115 x
$$

What is the difference in the price per square foot between contractor A and contractor B?

1. $\quad \mathbf{1 0 0 . 3 2}$
2. \qquad
3. \qquad

Solve each problem.

1) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A	
Square Feet	Total Price (\$)
1978	225,492
1926	219,564

Contractor B
$y=115 x$

Find the total price you'd get from building a $1,488 \mathrm{sq} / \mathrm{ft}$ house from the cheapest contractor.
2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt- Hours	Total Cost $(\$)$
1264	126.40
1417	141.70

Company B

$y=0.14 x$

Find the total cost in dollars of buying 1,248 kilowatt hours of electricity from the more expensive company.
3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A	
Pounds	Total Price (\$)
1406	$2,713.58$
1462	$2,821.66$

Junk Yard B

$\mathrm{y}=1.90 \mathrm{x}$

What is the difference in the price per pound between junk yard A and junk yard B?

Solve each problem.

1) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Square Feet	Total Price $\mathbf{(\$)}$
1978	225,492
1926	219,564
$\mathrm{y}=114 \mathrm{x}$	

Contractor B
$y=115 x$

Find the total price you'd get from building a $1,488 \mathrm{sq} / \mathrm{ft}$ house from the cheapest contractor.
2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Total Kilowatt- Hours	Total Cost $\mathbf{(\$)}$
1264	126.40
1417	141.70
$\mathrm{y}=0.10 \mathrm{x}$	

Company B

$y=0.14 x$

$$
y=0.10 x
$$

Find the total cost in dollars of buying 1,248 kilowatt hours of electricity from the more expensive company.
3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A		$\begin{gathered} \text { Junk Yard B } \\ \mathrm{y}=1.90 \mathrm{x} \end{gathered}$
Pounds	Total Price (\$)	
1406	2,713.58	
1462	2,821.66	
$\mathrm{y}=1.93 \mathrm{x}$		

What is the difference in the price per pound between junk yard A and junk yard B?

Solve each problem.

1) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A	
Square Feet	Total Price $\mathbf{(\$)}$
1534	173,342
1428	161,364

Contractor B

$y=123 x$

Find the total price you'd get from building a $1,351 \mathrm{sq} / \mathrm{ft}$ house from the cheapest contractor.
2) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A	
Total Pounds	Total Cost (\$)
20	5.40
11	2.97

Company B

$y=0.22 x$

Find the total cost in dollars of buying 17 pounds of sugar from the more expensive company.
3) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A

Total Boxes	Total Pieces
10	280
19	532

Company B
$y=27 x$

What is the difference in the number of pieces per box between Company A and Company B?

Solve each problem.

1) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A	
Square Feet	Total Price $\mathbf{(\$)}$
1534	173,342
1428	161,364
$y=113 x$	

Contractor B
$y=123 x$

Find the total price you'd get from building a $1,351 \mathrm{sq} / \mathrm{ft}$ house from the cheapest contractor.
2) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A Pounds	Total Cost (\$)
20	5.40
11	2.97
$y=0.27 \mathrm{x}$	

Company B

$y=0.22 x$

Find the total cost in dollars of buying 17 pounds of sugar from the more expensive company.
3) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Total Boxes	Total Pieces
10	280
19	532
$\mathrm{y}=28 \mathrm{x}$	

Company B
$y=27 x$

What is the difference in the number of pieces per box between Company A and Company B?

Solve each problem.

1) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A	
Square Feet	Total Price (\$)
1315	144,650
1795	197,450

Contractor B

$y=126 x$

Find the total price you'd get from building a $1,821 \mathrm{sq} / \mathrm{ft}$ house from the cheapest contractor.
2) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A	
Total Pounds	Total Cost (\$)
14	4.06
12	3.48

Company B

$y=0.29 x$

Find the total cost in dollars of buying 19 pounds of sugar from the more expensive company.
3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt- Hours	Total Cost $(\$)$
1280	128.00
1312	131.20

Company B
$y=0.14 x$

What is the difference in price per kilowatt hour between Company A and Company B?

Solve each problem.

1) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Square Feet	Total Price (\$)
1315	144,650
1795	197,450
$y=110 x$	

Contractor B
$y=126 x$

Find the total price you'd get from building a $1,821 \mathrm{sq} / \mathrm{ft}$ house from the cheapest contractor.
2) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Cotal Pounds	Total Cost (\$)
14	4.06
12	3.48
$y=0.29 x$	

Company B

$y=0.29 x$

Find the total cost in dollars of buying 19 pounds of sugar from the more expensive company.
3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Total Kilowatt- Hours	Total Cost (\$)
1280	128.00
$\mathrm{y}=0.10 \mathrm{x}$	

Company B
$y=0.14 x$

1. \qquad 200,310
2. \qquad
5.51
3. \qquad

Solve each problem.

1) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A

Total Boxes	Total Pieces
11	253
18	414

Company B
$y=20 x$

Find the total number of pieces you'd get from buying 14 boxes of candy from the company with the fewest pieces per box.
2) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard B

$\mathrm{y}=2.49 \mathrm{x}$

Pounds	Total Price (\$)
1024	$1,812.48$
1795	$3,177.15$

Find the total price you'd get from recycling 1,731 pounds of metal at the more expensive junk yard.
3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt- Hours	Total Cost (\$)
1380	193.20
1161	162.54

Company B
$y=0.13 x$

What is the difference in price per kilowatt hour between Company A and Company B?

Solve each problem.

1) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Total Boxes	Total Pieces
11	253
18	414
$\mathrm{y}=23 \mathrm{x}$	

Company B
$y=20 x$
1.
\qquad
2. \qquad
3. \qquad
0.01
2) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard B

Pounds	Total Price (\$)
1024	$1,812.48$
1795	$3,177.15$
$\mathrm{y}=1.77 \mathrm{x}$	

$$
\mathrm{y}=2.49 \mathrm{x}
$$

Find the total price you'd get from recycling 1,731 pounds of metal at the more expensive junk yard.
3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Total Kilowatt- Hours	Total Cost $\mathbf{(\$)}$
1380	193.20
1161	162.54
$\mathrm{y}=0.14 \mathrm{x}$	

Company B
$y=0.13 x$

Find the total number of pieces you'd get from buying 14 boxes of candy from the company with the fewest pieces per box.

Solve each problem.

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt- Hours	Total Cost (\$)
1266	113.94
1052	94.68

Company B

$y=0.10 x$

Find the total cost in dollars of buying 1,315 kilowatt hours of electricity from the cheapest company.
2) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A	
Total Boxes	Total Pieces
20	500
13	325

$$
y=30 x
$$

Find the total number of pieces you'd get from buying 20 boxes of candy from the company with the most pieces per box.
3) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A

Total Pounds	Total Cost (\$)
20	220.00
16	176.00

Company B

$y=12.00 x$

What is the difference in price per pound between Company A and Company B?

Solve each problem.

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Total Kilowatt- Hours	Total Cost (\$)
1266	113.94
$\mathrm{y}=052$	
94.68	

Company B

$y=0.10 x$

Find the total cost in dollars of buying 1,315 kilowatt hours of electricity from the cheapest company.
2) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Total Boxes	Total Pieces
20	500
13	325
$y=25 x$	

Company B

$$
y=30 x
$$

Find the total number of pieces you'd get from buying 20 boxes of candy from the company with the most pieces per box.
3) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A Total Pounds	Total Cost (\$)
20	220.00
16	176.00
y	Company B $y=12.00 x$
$\mathrm{y}=11.00 \mathrm{x}$	

Company A

Company B

$y=12.00 x$

1. \qquad
2. \qquad
3. \qquad

What is the difference in price per pound between Company A and Company B?

